

### **"Transformation of the Electricity System: A German Perspective" "**

Presentation at the 18th National Energy Conference "Energy & Development 2013"

Prof. Dr. Uwe Leprich Institute for Future Energy Systems (IZES) Athens, December 3, 2013

### **Uwe Leprich**



- Professor at the business school of the University of Applied Sciences in Saarbruecken since 1995
- At the same time scientific head of the Institute for Future Energy Systems (IZES), a university based research institute focussing on renewable energies, energy efficiency and decentralised power generation
- Author and co-author of several books and articles liberalised electricity markets, feed-in law regulations and instruments for promoting renewable energies in the heat market.
- Alternate member of the Administrative Board of ACER (Agency for the cooperation of Energy Regulators)
- Spokesman of the Renewable Energy Research Association till November 2013



#### IZES gGmbH – Institute for Future Energy Systems IZES gGmbH





# 1. Targets as cornerstones of the German "Energiewende"

#### **Targets of the Energy Concept 2010**



|      | Climate                            | Renewable<br>energies |                  | Efficiency                           |                                     |                                      |                 |
|------|------------------------------------|-----------------------|------------------|--------------------------------------|-------------------------------------|--------------------------------------|-----------------|
|      | Greenhous<br>e gases<br>(vs. 1990) | Share of<br>electr.   | Overall<br>share | Primary<br>energy<br>consump<br>tion | Electri-<br>city<br>consump<br>tion | Energy<br>consump<br>in<br>buildings | Trans-<br>port  |
| 2020 | - 40%                              | 35%                   | 18%              | - 20%                                | - 10%                               | -20 % heat<br>demand                 | -10%            |
| 2030 | - 55%                              | 50%                   | 30%              |                                      |                                     |                                      |                 |
| 2040 | - 70%                              | 65%                   | 45%              |                                      |                                     | -80%                                 | 40.%            |
| 2050 | - 80-95%                           | 80%                   | 60%              | - 50%                                | -25%                                | primary<br>energy                    | final<br>energy |

## The triangle of electricity policy for 2020 / old government





#### The triangle of electricity policy / new government





7 [Leprich, December 3, 2013, Athens]



## 2. The German electricity system in 2012



### **Gross electricity generation 2012**



#### Development of renewables for electricity generation



#### Development of electricity supply from renewable energy sources in Germany



\* solid and liquid biomass, biogas, sewage gas, landfill gas and biogenic fraction of waste; geothermal electricity supply is not shown due to small quantities involved; BMU - E I 1 according to Working Group on Renewable Energy-Statistics (AGEE-Stat); as at July 2013; all figures provisional

#### **Development of wind power**





#### **Development of solar power**



### Development of electricity supply from and installed capacity of photovoltaic plants in Germany





# 3. The technical components of the future electricity system







#### By the way:

The development of wind and PV is increasingly less justified with  $CO_2$  reduction targets, but increasingly with

- increase of added domestic value
- job creation
- reduction of import dependency
- stabilization of electricity prices in the long term
- export opportunities of the system
- etc.



Facilities for System Services (FfSS) are network-related facilities, usually large power plants



#### System Services

- voltage control
- frequency control
- reactive power
- re-establishment of power









#### The future electricity system





4 technical system components:

- VRES
- FfSS
- FO
- Grids



# 4. System design: How to finance the future electricity system?



#### Hypothesis: the markets will not do it!



#### Market prices are declining; one of the reasons is the "merit order effect" which will continue





### VRES will not be able to recover their investment costs through the (wholesale) markets for the foreseeable future → there has to be a "funding mechanism"

### **Funding mechanisms for VRES**



| eed-in<br>tariff           |                                           |                                                  | Premi                              | iums                     |           |                  |   |
|----------------------------|-------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------|-----------|------------------|---|
|                            |                                           | market prem                                      | um in ct/kWh                       |                          | capacity  | capacity premium |   |
|                            | sliding                                   |                                                  | fix                                |                          | (in €/kW) |                  |   |
|                            | adminis-                                  | -                                                | adminis-                           |                          | adminis-  |                  |   |
|                            | tered                                     | auction                                          | tered                              | auction                  | tered     | auction          | 2 |
|                            | technolo                                  | gy neutral                                       | mechanism                          | S                        | 1         |                  |   |
|                            | technolo<br>Pre                           | gy neutral<br>miums                              | mechanism                          | S<br>Quota<br>Obligation | -<br>1    |                  |   |
| fix mar<br>(in             | technolo<br>Pre<br>ket premium<br>ct/kWh) | gy neutral<br>miums<br>capaci                    | mechanism<br>ty premium<br>n €/kW) | S<br>Quota<br>Obligation |           |                  |   |
| fix mar<br>(in<br>adminis- | technolo<br>Pre<br>tet premium<br>ct/kWh) | gy neutral<br>miums<br>capaci<br>(ii<br>adminis- | mechanism<br>ty premium<br>n €/kW) | S<br>Quota<br>Obligation |           |                  |   |

Quota obligation

Feed-in tariffs

Feed-in premium

#### The German discussion on electricity prices







#### Strompreis für Haushalte





#### bdew

## The "best" funding mechanism is the FIT



- it has low financing costs due to low investment risks
- it has been very effective
- it has accomplished a broad variety of private investors to participate in funding the plants
- it is easy to administer
- it has brought the cost down significantly

#### •

#### At the end of the day ....





- Scenario 2011 A; all renewables; pricepath A -

Figure 19: Cumulative system-analytical differential costs of entire provision of energy from renewables in Scenario 2011 A for 10-year segments and price path A

## ... an electricity system based on renewables is cheaper than one based on fossile fuels or nuclear









#### The design of capability mechanisms ...



- is necessary in order to ensure the supply of the public good "security of supply"
- is complicated
- is very difficult with respect to timing
- should avoid large free-rider effects
- should be compatible with the necessities of the system transformation and climate policy
- should be harmonized at least with mechanisms of neighboring countries



- The center of the German Energiewende is the electricity system
- The future electricity system will be dominated by variable renewable energies; they will define the rationality of the system
- Therefore the challenge is much more than "market integration" of renewables; it is a fundamental "system transformation"
- To finance the future electricity system one has to have a specific funding mechanism for VRES
- To guarantee security of supply as a public good one has to complete the system with capability mechanisms that reward the provision of capacity



# Thank you very much for your attention!

Institut für ZukunftsEnergieSysteme (IZES)

Altenkesselerstr. 17, Gebäude A1 66115 Saarbrücken Tel. 0681 – 9762 840 Fax 0681 – 9762 850 email: leprich@izes.de Homepage www.izes.de