

Power Choices, pathways to carbon-neutral electricity in Europe by 2050

Hans ten Berge Secretary General

IENE 15th Energy & Development 2010 Conference Athens, 23 November 2010

1. POWER CHOICES STUDY : MAIN ASSUMPTIONS

Main assumptions for Power Choices scenario

75% GHG cut EU-wide

eurelectric

POWER CHOICES SCENARIO

- 75% GHG cut across whole EU economy
- CO₂ price applied uniformly to all sectors
- Power becomes major transport fuel
- All power generation options available (with CCS commercially available as of 2025)
- Major policy push in energy efficiency
- No binding RES target post-2020
- CO₂ price is the only driver for low-carbon generation post 2030

Macroeconomic assumptions

Generation cost assumptions for RES

Levelised generation costs of thermal technologies at different carbon prices

2. KEY RESULTS

STICLE &

Final energy consumption drops

Power generation mix evolving

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

%	2005	2020	2030	2050	2020	2030	2050
			Power Choices			Baseline 2009	
RES 🖬	14.8	32.0	37.7	40.4	26.7	33.3	34.2
<mark></mark> oil	5.6	1.8	1.2	0.7	1.9	1.2	0.9
ڬ Gas	16.0	20.3	16.5	13.6	22.2	18.5	17.3
Solids 📓	31.9	21.4	18.5	16.9	24.7	20.8	19.3
Nuclear	31.7	24.5	26.1	28.4	24.5	26.2	28.3

90% drop in CO₂ emissions from electricity generation by 2050

eurelectric

% of CO2 emissions captured in power generation

Details on CCS:

Pilots operational in 2020, mass deployment starting in 2025 - at its maximum after 2030.

CCS storage infrastructure and regulations operational after 2020.

Cumulative CO2 storage until 2050 (16 Gt) represents only 9.4% of storage EU potential.

Long-term average storage and transportation cost: 10€/ tCO2 in 2030; 20 €/ tCO2 on average between 2030 and 2050.

Intra-regional transmission capacity in 2030 versus 2005

The model considers existing and announced new transmission line interconnections.

Total grid capacity (incl. inter-regional investment): + 40% between 2005 and 2030, and then stable until 2050.

Role of electricity in reducing energy demand

Overall energy cost in the economy

eurelectric

- By 2025, total cost of energy in relation to GDP increasing from 10.5% in 2010 to 13%, up to 0.6% higher than in Baseline.
- By 2050 the cost of energy under *Power Choices* falls back to 10% at 2050, just 0.3% higher than under Baseline (which has a less ambitious GHG emissions reduction target).

Average Price of Electricity (€'05/MWh)

Investments needed

Power Generation Investment (Billion €)

3. SENSITIVITIES

STICLE 1

What if...

Nuclear phaseout is reversed in Germany and Belgium?

Commercial deployment of CCS is delayed to 2035?

One-third of onshore wind power is not built due to planning problems?

CONT

All technologies are really needed

CO2 emissions from power, EU-27

- 10-year delay of CCS = delayed CO₂ emission reductions from power & whole economy!
- More nuclear = more rapid reduction curve
- 1/3 onshore wind not built = more CCS & nuclear, off-shore wind not likely to fill gap.

5. POLICY RECOMMENDATIONS

Technology Choices

- Enable the use of all low-carbon technologies and ensure investments in transmission and distribution lines
- Encourage public acceptance of modern energy infrastructure

Energy Efficiency

- Facilitate the electrification of road transport and efficient electrotechnologies for heating and cooling
- Ensure that public authorities take a leading role in energy efficiency, adopting standards and incentives to help consumers choose energyefficient technologies

Carbon and Electricity Markets

- Support well functioning carbon and electricity markets so as to deliver carbon reductions at least cost
- Ensure that all sectors internalise the cost of greenhouse gas emissions
- Actively promote an international agreement
 on climate change

Costs

- European and national budgets should radically refocus towards supporting a new intelligent energy economy
- Recognise that the cost of technology deployment differs substantially across the EU Member States and distribution effects will vary

Follow-up recommendations

- Wholesale market design in relation to massive penetration of renewables (and nuclear)
- Investments needed in grid enhancements (both transmission and distribution)
- Regional analyses, a scale at which effects may substantially diverge from the European average
- eMobility, how to properly ensure the rolling out of electric transportation
- Risks mitigation for investments in energy infrastructures
- Impact of EU moving from -20% to -30% GHG emissions by 2020

Thank you for your attention!

month