Security of Energy Supply – Indicators for Measuring Vulnerability and Risk

Alexander Zafiriou

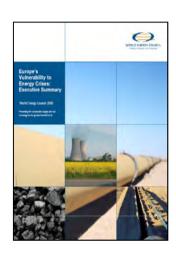
5th South East Europe Energy Dialogue Thessaloniki, GREECE 2-3 June 2011

- Approach
- Ex-post results
- Ex-ante results
- Conclusions

- Approach
- Ex-post results
- Ex-ante results
- Conclusions

Background

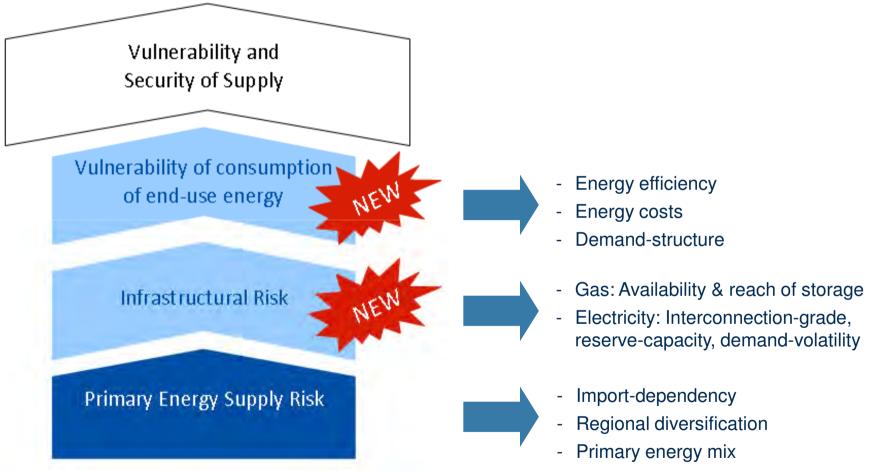
Main idea


- quantify security of supply

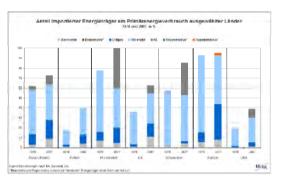
WEC-study (2008)

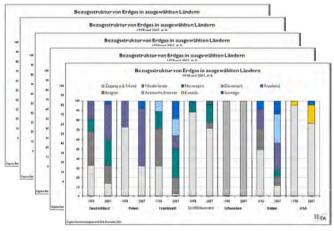
- examined the concept of vulnerability
- provided a conceptual framework based on indicators

German case study (2010)


- hooked on WEC-concept using broad empirical data
- compressed indicator for vulnerability of a nation
- <u>Ex-post analysis</u>: Validate empirical results with historical data (to gauge the model)
- <u>Ex-ante-analysis</u>: Develop future scenarios elaborate different policies and their impact on vulnerability

Indicator-set



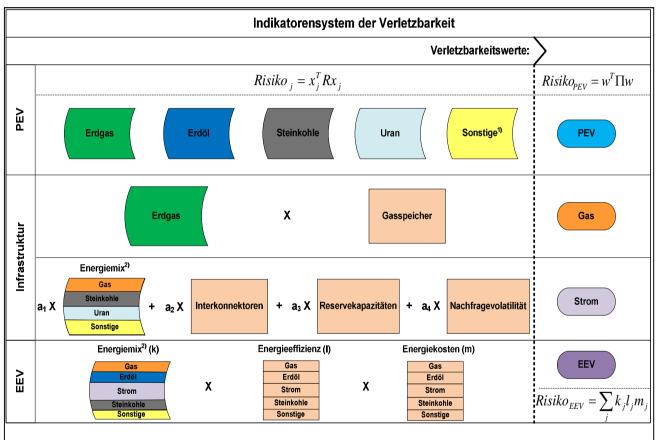


NEW: To compress/merge all indicators into one single indicator (value betw. 0-1)

Calculation example: primary energy level

Import dependency

regional concentration


primary energy mix

$$Risiko := \mathbf{w}^T \mathbf{X}^T \mathbf{R} \mathbf{X} \mathbf{w} = \mathbf{w}^T \mathbf{\Pi} \mathbf{w}.$$

Risk value at primary energy level

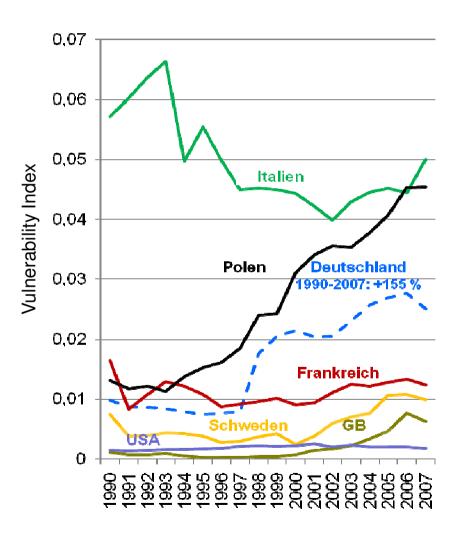
Methodology: System of indicators to measure vulnerability

¹⁾ Bei den sonstigen Energieträgern handelt es sich um alle Energieträger die nicht im nennenswerten Umfang importiert werden, wie Braunkohle oder Erneuerbare Energien und somit auch kein Importrisiko aufweisen.

²⁾ Indikator Energiemix Anteil von Energieträger j am Energiemix multipliziert mit Risiko von Energieträger j.

EE FA

Necessary re-scaling according to KOM:


"Tools for Composite Indicator Building"

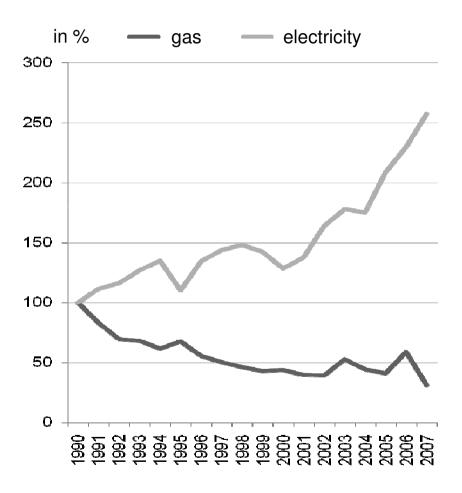
- Approach
- Ex-post results
- Ex-ante results
- Conclusions

Comparison of primary energy supply risks (international results)

POL & **ITA** show the highest vulnerability:

- → noticeable: both countries without nuclear
- → **POL**: low diversification; domestic coal replaced by import-fuels (gas, oil)
- → ITA: indicator dominated by oil due to very high share, reduction path mainly driven by changes in import-structure

In GER PE-supply risk more than doubled:


→ Higher import-dependency from regions with higher geopolitical risks

FRA, UK, SWE & USA relatively secure:

- → FRA: high share of nuclear and diversified oil-import-structure
- → SWE, UK, USA: relatively high level of indigenous sources and nuclear

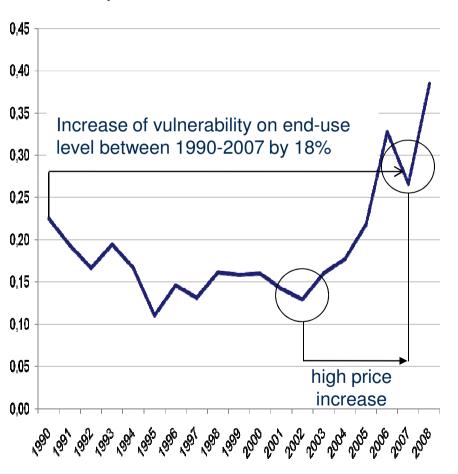
Vulnerability of grid-bound energy (results for Germany)

Gas: Decreased vulnerability

- → higher import-share
- → substantial investments in infrastructure (e.g. storage doubled)

investments could over-compensate the increasing vulnerability due to higher importshare

Electricity: Increased vulnerability


- → declining power-plant reserve capacity
- → higher risks on fuels (import-share)
- → increasing volatility of demand

no sufficient compensation

Vulnerability of end-use-level (results for Germany)

Vulnerability Index

Observations

- → Overall increase of vulnerability by 18 %
- → Efficiency effects and substitutionprocesses led to decrease between 1990-2002
- → Dramatic increase of energy-prices since 2002 had high negative impact on vulnerability value

- Approach
- Ex-post results
- Ex-ante results
- Conclusions

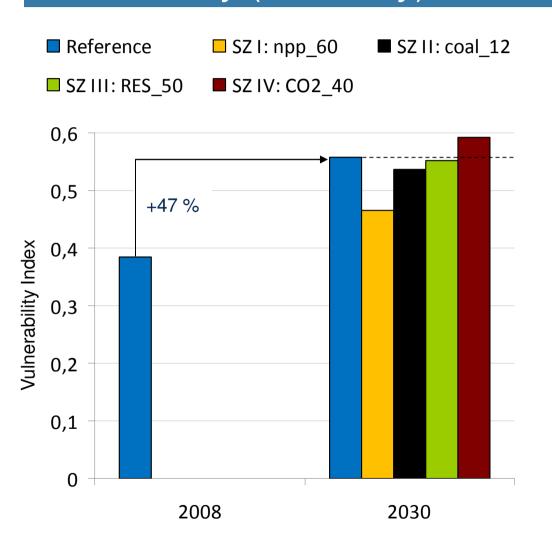
Scenarios (Germany)

Characteristics

Ref:	Phase-out nuclear & hard coal; 40% RES in 2030; 40% GHG-reduction by 2030
SZ-I:	Lifetime extension for nuclear power plants to 60 years
SZ-II:	Retention of domestic hard coal production from 2012 at the level 12 Mio. t/a *)
SZ-III:	Extension of the renewable-goal to 50 % of power-demand until 2030
SZ-IV:	Extension of the GHG-goal to 50 % until 2030 (Baseline 1990)

^{*)} incl. Invest subsidies for high efficient coal PP (2013-2016 from ETS)

Qualitative effects on selected parameters (Germany)



	GDP/ jobs	PE- demand	Energy imports	Shift in Energy mix	Prices: Electr./ CO2
compared to reference					
SZ-I: Nuclear 60a	+/+	++	**)	Uran	low/low
SZ-II: Domestic hard coal (12 Mio. t) *)	+/+	+	-	Coal	low/high
SZ-III: RES goal extension (2030: 50 %)	-/-	-	-	RES	high/low
SZ-IV: CO2 goal extension (2030: 50%)			++	Gas	high/high

^{*)} incl. Invest subsidies for high efficient coal PP (2013-2016 from ETS) **) Nuclear eq. to domestic due to high level of storage possibilities

Quantitative results for the overall vulnerability (Germany)

general observations

 Continuation of current policy (early 2010) leads to significant increased vulnerability by 2030
+47 % compared to 2008

scenario effects/impact

- Lifetime ext. npp 60a with largest impact: could halve increase +47 % ► +22 %
- Increased use of domestic coal: +47 % ▶ +41 %
- Increased RES-share: +47 % ► +45 %
- More ambitious CO2-target:+47 % ► +56 %

- Approach
- Ex-post results
- Ex-ante results
- Conclusions

Summary of the results for Germany

Primary energy level

- Vulnerability in Germany has more than doubled (1990–2007)

Infrastructural & end-use level

- The relatively high level of solid infrastructure & efficiency could absorb vulnerability increases at end-use level; even though raise of 18 %

Scenario results

- "Current-policy-path" leads to further vulnerability-increase of 47 % until 2030
- Meaningful policy could lower the vulnerability-increase
 - → Largest impact: lifetime-extension for npp to 60a (could halve the increase)
 - → Other policies also improve supply-security (Coal/RES-scenario)
 - → No single measure change the trend of increased vulnerability
- Mix of measures essential!

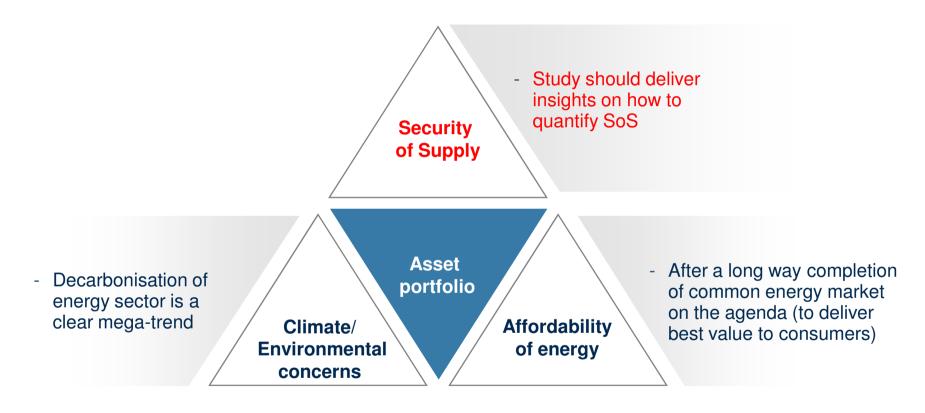
Uncertainties / Open questions

- What does the absolute value of vulnerability tell us?
- Is the selection of indicators sufficient for sound results?
- What is the impact of the necessary simplifications of the highly complex and multidimensional task, e.g. scaling, weighting?
- Availability of input data!
- Reliability of input data!

- ...

Thank you!

Back-up



- Background
- Approach
- Ex-post results
- Ex-ante results
- Conclusions

The Energy Trilemma

Political Challenge:

Create the right framework for a well balanced triangle

Definition & leading questions

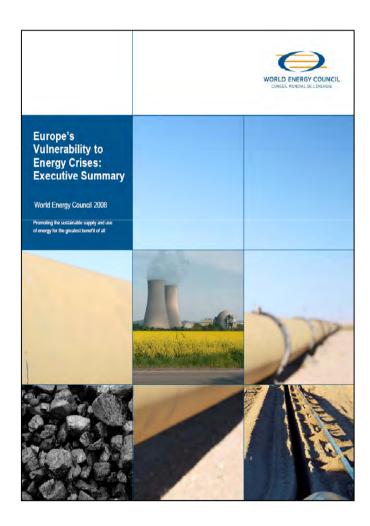
Possible Definition by WEC:

"...vulnerability of an energy system can be measured by its ability to cope with adverse events"

- Is vulnerability measurable (beyond single aspects, e.g. import-dependency)?
- Which meaningful indicators for vulnerability could be identified?
- How vulnerable are we in Europe?
- Which starting points can we identify to reduce our vulnerability?

Initial WEC-study 2008

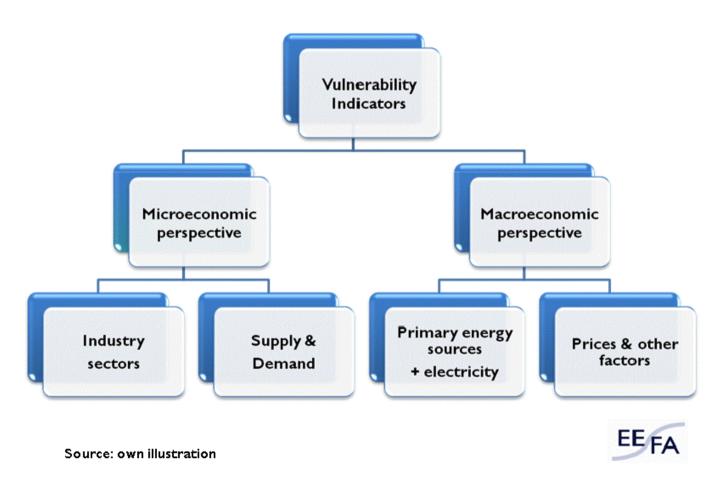
Motivation:


- Anticipated increases in energy prices
- Growing import dependency of Europe
- Reinforce concerns about meeting the energy demand in the future

Objective:

 Assessment economies could respond to a possible energy crisis provoked by various thinkable events

Main result:


- Principles for indicator based approach
- Development of an indicator-set to evaluate the levels of vulnerability

Proposal of the initial WEC-study

Structure of the set of indicators (WEC proposal)

Reference scenario (Germany)

Nuclear

- Phase-out decision unchanged (last npp around 2020)

Hard coal

- Phase-out decision (last production 2018)

Renewables

- Political targets will be met ► 30% in 2020, 40% in 2030

GHG

- National reduction-target anticipated 30% in 2020, 40% in 2030

Emission Trading

- Energy industry: full auctioning from 2013
- Other industry: 20% in 2013 up to 100% in 2027

Alternative scenarios (Germany)

Scenario description				
SZ-la:	Lifetime extension for nuclear power plants to 60 years			
SZ-la:	Lifetime extension for nuclear power plants to 40 years			
SZ-IIb:	Retention of domestic hard coal production from 2012 at the level 12 Mio. t/a *)			
SZ-IIb:	Retention of domestic hard coal production from 2012 at the level 8 Mio. t/a *)			
SZ-III:	Extension of the renewable-goal to 50 % of power-demand until 2030			
SZ-IV:	Extension of the CO2-goal to 50 % until 2030 (Baseline 1990)			

^{*)} incl. Invest subsidies for high efficient coal PP (2013-2016 from ETS)